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Spatial Heterogeneity and Critical Patch Size:
Area Effects via Diffusion in Closed Environments
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We describe a class of mathematical models for critical patch size in which the mechanisms
inducing area effects are based on source-sink population dynamics arising from dispersal
throughout a closed, finite, but spatially heterogeneous environment. Our models are reac-
tion-diffusion equations, but unlike classical KISS models for area effects they do not assume
that there is dispersal across the boundary of the environment into a hostile exterior. We
observe that simple rescaling has the same effects in our models as in KISS models and hence
predicts the same sort of area effects, but that other sorts of rescaling may not predict area
effects, The models considered here provide an alternative to the KISS models used in our
previous work on species-area relationships in island biogeography.

1. Introduction

Natural systems occupy space and often display
variability within the space they occupy. An obvi-
ous question is how the size and variability of an
environment affects the population or commun-
ity inhabiting it. In recent years, there has been
considerable interest in theoretical approaches to
understanding spatial effects in population dy-
namics; see for example the reviews (Hastings,
1990; Karieva, 1990; Taylor, 1990; Goldwasser
et al., 1994; Holmes et al., 1994; Molofsky, 1994;
Tilman, 1994). There has also been at least some
work on the empirical side as well; there is a re-
view of recent literature on the effects of habitat
fragmentation in Doak et al. (1992). Both empiri-
cal and theoretical aspects of the effects of habitat
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geometry and edge permeability on dispersal
from habitat patches are discussed in Stamps
et al. (1987). There has also been considerable
recent interest in community level approaches to
spatial effects, mostly because of the connections
to refuge design, and mostly from the viewpoint
of the equilibrium theory of island biogeography
of MacArthur & Wilson (1963, 1967). Some of the
literature on island biogeography, habitat frag-
mentation, refuge design, and related issues in
conservation is cited in the references of Ehrlich
(1989) and Cantrell & Cosner (1989, 1994).
Of course, the biogeography of islands has been
a focus of theoretical and empirical study
since Darwin. Islands lend themselves to
studies of spatial effects because they occur
in various sizes and at various distances from
sources of colonists and have sharply defined
boundaries. Many theoretical and empirical
issues in island biogeography are discussed
in Williamson (1981).

© 2001 Academic Press
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An examination of the literature shows
patterns in the sorts of models typically used to
address different aspects of spatial theory. Area
effects at the population level are often modeled
by reaction—diffusion equations with spatially
constant coefficients. Effects related to spatial
heterogeneity and dispersal through different
habitats are frequently studied via patch models.
Area effects at the community level are largely
described in terms of species—area curves which
are derived from ideas related to the equilibrium
theory of island biogeography of MacArthur and
Wilson with little or no explicit reference to
population dynamics. In many cases, the choice
of modeling approach is based on a thoughtful
consideration of which sort of model offers the
best description of the phenomenon under study,
but sometimes the choice is based on the limita-
tions (or perceived limitations) of the mathemat-
ics. An example that we shall address in the
present article is critical patch size theory and its
connections with environmental heterogeneity.
The best-known models for critical patch size are
called KISS models after Kierstead & Slobodkin
(1953) and Skellam (1951). In current usage, a
KISS model is generally interpreted as a reac-
tion~diffusion equation for a population density
on a bounded region, with the coefficients of
the equation being constant on the region and
the density going to zero on the boundary of the
region. The boundary condition corresponds to
a situation where members of the population
diffuse randomly across the boundary of the re-
gion into an immediately lethal exterior. On the
other hand, Skellam (1951) explicitly considered
models incorporating spatial heterogeneity via
variable coefficients, but commented on such
models that “orthodox analytical methods ap-
pear to be inadequate ... ” (Skellam, 1951, p. 212).
We shall see that mathematical methods de-
veloped in the decades since Skellam’s seminal
work are now adequate to derive results on critical
patch size from reaction—diffusion models incor-
porating spatial heterogeneity in closed, bounded
environments with no dispersal across the bound-
ary. It turns out that the scaling properties of such
models are the same as those of standard KISS
models. Hence, the derivation of species-area rela-
tions from classical KISS models in Cantrell
& Cosner (1994) could also be based on the mech-

anism of spatial heterogeneity within islands or
other isolated environments rather than dispersal
across a boundary into a hostile exterior region.
The sort of heterogeneity we envision is variation
in the quality of habitat for a single species. The
question of how the presence of multiple habitat
types affects the number of species present in com-
munity is also of interest (see Williamson, 1981)
and could be addressed by methods similar to
those used here, as in Cantrell & Cosner (1993),
but we do not consider that issue.

Since the work of Skellam (1951) and
Kierstead and Slobodkin (1953) there have been
a number of variations and refinements on their
basic models for critical patch size. Ludwig et al.
(1979) considered situations where there might be
multiple equilibria for the population density.
Gurney & Nisbet (1975) examined a situation
which is closest to those considered here. In their
models, the overall environment was considered
to be infinite, but the quality of habitat was
assumed to be good enough to induce a positive
local growth rate on a central region and to
become increasingly bad at greater distances
from the center. What is different in our present
discussion is that we assume the overall
environment to be finite with a boundary which
is impermeable to the population inhabiting the
environment but with arbitrarily arranged in-
terior regions of favorable and unfavorable habi-
tat among which the population may disperse.
Thus, we consider dispersal among subregions of
a closed environment. The distinction between
patches with “hard edges” across which there is
no dispersal and those with “soft edges” across
which dispersal may occur is studied via simula-
tions in Stamps et al. (1987). In the terminology of
that paper the situation we consider would be
that of a “superpatch” with a hard edge contain-
ing one or more soft-edged patches of favorable
habitat and also containing soft-edged patches or
regions of unfavorable habitat. The sort of natu-
ral system we have in mind might be an oceanic
island containing a variety of habitat types and
inhabited by a population of some terrestrial
species. The population dynamics could be
viewed as a spatially continuous version of the
source-sink dynamics of Pulliam (1988). Our
main observation is that spatial rescalings which
expand the favorable and unfavorable regions
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proportionally without changing their shape or
arrangement behave exactly as do rescalings of
standard KISS models and hence yield the same
results (up to the numerical values of certain
constants) on critical patch size. We first make
our observations on scaling in Section 2 in the
context of simple models, but in Section 3, we
describe a reasonably general class of models
including density-dependent dispersal for which
the scaling results hold. In Section 3, we also
discuss alternative sorts of scalings which do not
yield a critical patch size, and describe how criti-
cal patch size theory based on environmental
heterogeneity can be used to obtain species—area
relations in island biogeography theory. The
species-area relations are obtained from critical
patch size theory as in Cantrell & Cosner (1994)
but replace the KISS mechanism of dispersal
across a patch boundary with something akin to
source-sink dynamics within the patch.

There has been some theoretical work on spa-
tial heterogeneity based on reaction-diffusion
models with variable coefficients, but other than
the work of Gurney & Nisbet (1975), little of it
deals explicitly with critical patch size theory or
the effects of scaling. Other papers using reac-
tion-diffusion models with spatial variation in-
clude Pacala & Roughgarden (1982), Shigesada
et al. (1986), Cantrell & Cosner (1989, 1991a,b,
1993) and Benson et al. (1993). There has been
little work on connecting island biogeography
theory with population dynamics on the interior
of islands; a notable exception is Holt (1992).
To our knowledge, the only discussion of island
biogeography theory from the viewpoint of
reaction-diffusion models is in Cantrell &
Cosner (1994).

2. Simple Models for Critical Patch Size
2.1. REVIEW OF KISS MODELS

The basic form of KISS model for critical
patch size, as introduced in Kierstead & Slobod-
kin (1953) and Skellam (1951) has the form

ou %u  d*u .
Et——d<5?+6_yi>+m in Q, )

u=0 on 08, 2)

where u is a population density, 2 a finite two-
dimensional region, and 0Q denotes the bound-
ary of Q. The boundary condition (2) is generally
interpreted to mean that members of the popula-
tion diffuse randomly across the boundary of
Q and that the exterior of Q is immediately lethal
to them. It can be argued in many cases that these
assumptions are not realistic. For example, if
Q represents an island and the population de-
scribed by u consists of terrestrial organisms with
an aversion to entering water, we would expect
that essentially none of the population would
cross Q. A boundary condition describing a
situation where no member of the population
crosses 0€2 is the Neumann or reflecting boundary
condition

ou

5}—1=0 on 02, 3

where du/dn denotes the directional derivative of
u in the direction of the outward pointing normal
vector to 09. However, if we consider eqn (1) with
boundary condition (3) then the prediction is that
any size patch will support growth of the popula-
tion. We shall see that the situation may be very
different if we assume spatial heterogeneity in the
growth rate r in eqn (1).

To understand how the phenomenon of critical
patch size can occur for models more general
than eqn (1) we shall need to consider certain
problems associated with the spatial part of the
model and examine how the eigenvalues behave
if the region Q is rescaled. We shall follow
the approach used in Cantrell & Cosner (1994)
for standard KISS models and then show
how the method extends to more complicated
situations. The first observation is that a
population described by eqns (1) and (2) will grow
exponentially if the largest eigenvalue ¢y for the
problem

cl<%%;+%27lg>+rl//=m// in Q,
(4)
W =0 ondQ

is positive, and will decline exponentially if o,
is negative. In the simple case of eqn (4) the
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eigenvalue ¢ can be computed explicitly in terms
of the smallest eigenvalue A, of the problem

0*p  0*¢ s
d(;a-)zf—k—a—;g)%—bd)—() in Q,
©)

¢ =0 ondQ.

The connection is that both A; and ¢, are unique-
ly characterized by having positive eigenfunc-
tions, and the eigenfunction ¢ from eqn (5) may
be set equal to ¥ in eqn (4) and yields oy =
(1 —Ayr. Thus, ¢, >0 if i; <1 (predicting
population growth) and o, <0 if A;>1
(predicting a decline in population). The second
point is that we can understand the relationship
between A; and the size of @ by considering
a region o with the same shape as Q but
with unit area and rescaling Qo to Q by the
change of variables X = \/Zx, y = \/,/—1}1 where
A is the area of Q. If we denote by 4, the smallest
eigenvalue of

0% 0% L .
d<ﬁ+'g§>+ll¢—-0 in Qg,
¢ =0 on 99,

then we have A, = 4¢/A4. (We used the same res-
caling argument in a slightly different context to
obtain Theorem 2 of Cantrell & Cosner (1994)
and will discuss the rescaling in more detail in the
context of more general models). If we combine
the scaling with the condition A; < 1 implying
population growth we obtain the condition

A> A N

characterizing the critical patch size for popula-
tion growth in regions having the same shape as
Q,. Finally, we observe that in this simple case
we can connect 1y with the smallest eigenvalue
A of

o*¢p 3%
-6?4*‘(,5)"2“4*11(/)—0 on Qo,
(@)
¢ =0 on dQ2,

by observing that if 1§ is an eigenvalue of eqn (8)
then Ay = dA§/r is an eigenvalue of eqn (6). This
leads to the familiar formulation of the critical
patch size as

A > Ad/r 9)
[See e.g. Holmes et al., 1994, eqn (15)].

Example 1. In simple geometries it is possible
to compute A explicitly by using separation
of variables to construct the eigenfunction ¢.
If Q, is a square, of side 1, we obtain ¢(x, y) =
sin(nx)sin(ny), so that A§ =2n%=~19.7.
If the domain £ is rescaled to become a square
of area A, then the eigenvalue Ay is given by
lo =2m%/A so the condition (9) becomes
A > 2r?dfr.

2.2. DIFFUSION MODELS ON CLOSED REGIONS
WITH SPATIAL HETEROGENEITY

The essential assumptions of KISS models are
that the population inhabitats a homogeneous
patch and that the patch boundary of that is
completely open to a hostile exterior region in the
sense that the population diffuses freely across
the boundary. An alternative sort of diffusion
model can be based on the assumptions that the
patch is spatially heterogeneous and that the
population diffuses freely throughout the patch
but does not cross the boundary. It can be argued
that those assumptions may be more realistic in
some cases than those of standard KISS models.
Spatial heterogeneity is certainly a feature of
many natural systems, and some terrestrial popu-
lations might disperse more freely and uniformly
between habitats of different quality than they
would from an island into the surrounding water;
see for example the discussion in Stamps et al.
(1987). This would especially be likely if the qual-
ity of habitat were to vary continuously rather
than changing sharply at the edges of subpatches.
Population dynamics in a patchy environment
with patches of variable quality has been
modeled by the source-sink dynamics of Pulliam
(1988); however, we are interested in the effects of
patch size and variability within a patch,
so we consider continuum models with what
amount to source-sink dynamics within the
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continuum. A simple model embodying the
above hypotheses is

ou o*u  0%u )
Frin d <ﬁ + a_y2> +r(x, yu inQ (10)

subject to the boundary condition (3), namely
du/on = 0 on the boundary of ©, where r(x, y) in
general is positive on some parts of Q and nega-
tive on others. (Recall that the boundary condi-
tion describes a perfectly reflecting boundary.) It
turns out that the behavior of eqn (10) depends
critically on the average quality of the habitat in
Q as measured by the integral of r(x, y) over Q.
We can consider the eigenvalue problems for
eqn (10) corresponding to eqns (4) and (5). For
theoretical reasons we shall consider the ana-
logue of eqn (5) first. The eigenvalue problem
corresponding to eqn (5) for eqn (10) is

0%  0%¢ ] .
CZ<W+W> + Ar(x, )¢ =0 in Q,

(11)

5_4)_ =0 on Q.
on

This problem will always have a principal eigen-
value which is characterized by having a positive
eigenfunction. If r(x, y) > 0, that principal eigen-
value will be zero and the eigenfunction will be
a constant. If #(x, y) changes sign there may also be
a positive principal eigenvalue. The basic result is
the following theorem of Brown & Lin (1980):

Theorem 1. Suppose that r(x, y) is continuous on
Q and positive on some subregion of Q with positive
area. If

Jf r(x, yydxdy <0, (12)

Q

then there is a unique positive principal eigenvalue
A (r, Q) for eqn (11). The principal eigenvalue is
characterized by having a positive eigenfunction ¢.

Discussion. The biological meaning of the hy-
potheses on the intrinsic local growth rate r(x, y)
is that the growth rate must be positive some-
where in the region Q but must have a negative

average. In other words, there must be some
subregion or subregions of Q where the habitat is
favorable for the population, but on the average
the habitats in 2 must be unfavorable. (The aver-
age of r(x, y) is simply the integral appearing in
eqn (12) divided by the area of Q.) The presence of
relatively large areas of unfavorable habitat in
the closed environment corresponding to the
boundary condition (3) is the mechanism which
replaces diffusion across the boundary of an open
environment into a hostile exterior region which
corresponds to boundary condition (2). Results,
more general than Theorem 1, are obtained in
Senn & Hess (1982); see also (Hess, 1991). We
shall discuss and apply some of them in the next
section. If the boundary condition in eqn (11) is
replaced with ¢ = 0 on 02, then the theorem will
hold without hypothesis (12) (see Manes &
Micheletti, 1973; Hess & Kato, 1980).

There are deep connections between the eigen-
value A{ (r, Q) occurring in Theorem 1 and the
behavior of density-dependent models based
partly on eqn (10). We shall describe those in the
next section. For our current discussion we need
to only consider the connection between A{ (r, )
and the growth or decline of the population de-
scribed by eqn (10). That connection is made by
the eigenvalue problem corresponding to eqn (4):

oMy %Y " .
d<a7+6_3)7 +r(x, V) =0op inQ,
(13)
% =0 on 0Q.
on

As in eqn (4), there is always a unique largest
eigenvalue o, for eqn (13) and model (10) predicts
exponential growth for the population density
u if o, > 0 and exponential decay if o; < 0. The
connection between o, Af (r, 2), and r(x, y) is
given by the following theorem of Senn (1983):

Theorem 2. Suppose that r(x, y) is continuous in
Q and is positive at some point (xo, yo) € 2.
(@) If eqn (12) fails so that

JJ r(x, y)dxdy =0

Q

then o, > 0 in eqn (13).
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(ii) If eqn (12) holds then

o, >0 ifAF(nQ) <1,
o, =0 ifAf0,Q) =1,
o, <0 AT Q) >1.

Discussion. Part (i) can be interpreted as saying
that if the habitat quality in @ is high enough to
sustain a nonnegative spatially averaged intrinsic
local rate of population growth then model (10)
always predicts exponential growth. (Recall that
we assume r to be positive somewhere in Q) If the
spatially averaged intrinsic local growth rate is
negative, as in eqn (12), then eqn (10) predicts
growth if 1] (r, Q) < 1 and decline if A Q) > 1
This is in exact analogy with the case of KISS
models.

The results on which Theorem 2 is based are
in Senn (1983, pp. 1204-1205). The notation and
sign conventions used are different from those in
the present article. In Senn’s notation the quanti-
ty corresponding to r is Am, and the quantity
corresponding to oy is — y(1). (The meaning of
A, is the same.)

Since we now have a characterization of the
predictions of eqn (10) in terms of A0, Q),
we can examine how Ay (r, Q) is affected by
rescaling.

2.3, RESCALING AND CRITICAL PATCH SIZE

To see how eqn (10) subject to condition (12)
on r(x, y) can be interpreted to yield information
on critical patch size we examine how the eigen-
value A7 (r, 2) behaves under scaling. We use the
same scaling here as was used for KISS models in
Cantrell & Cosner (1994). Namely, we suppose
that Q, has the same shape as Q but area 1, and
that if (%, §) are variables on Q, we can obtain
r(x, y) by stretching a growth rate ro (X, y) linearly
in each space variable relative to the quadratic
increase in area from Q, to Q. That is, we
suppose that A is the area of Q so that

(%, 7) = (x/x/4, y/x/A) and hence r(x, y) = ro(x/
\/Z, y/\/;l-)zro(ic, 7). The rescaling is shown
graphically in Fig. 1. Note that although the
integral of r over Q is equal to A times the
integral of ro over Q,, the sign of the integral is

(@) 1.0

T

0.5F

ol

i

0 oA

-1.0

FIG. 1. This figure shows graphs of environmental qual-
ity, as measured by the local population growth rate r{x), in
a pair of one-dimensional environments. The figure shows
a rescaling of the environment in which the spatial variable
is “stretched” so that the number of regions of favorable
habitat (r(x) > 0) and unfavorable habitat (r(x) < 0) remains
the same but the size of each region is increased as the size of
the overall environment is increased. The original environ-
ment is shown in (a) while the rescaled environment is shown
in (b). In this sort of scaling the principal eigenvalue A
behaves exactly as it would for a KISS model, if the overall
spatial environment were expanded by the same factor. In
this case, the environment is expanded by a factor of 3 so the
eigenvalue would be divided by a factor of 9. (The principal
eigenvalue scales as (length) ™2 independent of whether the
environment is one, two or three dimensional.)

not changed by the scaling and so eqn (12) will
hold for r if it holds for 7.

Suppose that r, satisfies eqn (12) with respect
to (%, ) and Qo, and let ¢o(%, 7)) > 0 be the eigen-
function associated with the principal eigenvalue
AT (ro, 20). We have

92 0? ~
d <_5—>~;£29 + 5;7‘0> + A1 (ro, Qo)1o (X, §) o =0
in Qg, (14)
% =0 on 02.
on

If we let ¢(x, 1) = o(x/x/4, ¥in/4) = bo(%, )
then, since r(x, y) = I'O(x/\/z, y/ﬁ), we have

¢ 2p\ _ *do , o
d<53-c—2+—5y—2>-(d//1)< =t 6}2>
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= —[Af (ro, D)/ AT 70 (%, D) o (%, 7)

)/ Alr(x, y) (. )
(15)

i

- Uf("o, Q

for (x, y) on £, withvad)/an = (1/\/2)69/)0/011 =0
for (x,y) on 89. By eqn (15), we have ¢ >0
satisfying

2 2
l(g dz) +%y£> + [Af (ro, Qo)/Alr(x,y)¢ in 8,

(16)
6a¢ 0 on 09,

so by the uniqueness of the principal eigenvalue
in eqn (11) we have i (r, Q) = A{ (ro, Q0)/A.
Hence, by Theorem 2, the criterion o, > 0 for
population growth in eqn (10) is equivalent to
Af (r, Q) < 1, which is equivalent to

A > A{ (ro, Qo). (17
This is identical to the characterization (7) for

KISS models. If we let AT (ro, Qo) be the principal
eigenvalue for

2 2
Zf/) gfﬁ + g%, ¥)p =0 on £,

5<15

(18)
=0 on dQ,

we would have A¥ = A (ro, Qo)/d so that we
could rewrite eqn (17) as

A> d/v{:(rg, Qo) (19)

in analogy to eqn (9). If we attach a parameter to

r(x, y) so that r(x, y) = pr*(x, y) = pr§(X, y) then
eqn (19) becomes
A > (d/p)A1(r5, Qo). (20)

The reason for attaching such a parameter would
be for purposes of comparison between species
with similar habitat needs (as measured by r§)

but which reproduce and/or disperse at different
rates (as measured by p and d, respectively). For
example, a species whose members allocate
a high percentage of consumed resources to
physiological reserves might have a slow repro-
ductive rate in favorable habitats but a slow
starvation rate in unfavorable habitats, which
would be reflected by a small value for p. A spe-
cies whose members allocate resources primarily
to reproduction might increase in numbers rap-
idly in favorable habitats but starve quickly in
unfavorable habitats, which would be reflected
by a large value for p.

Example 2. Suppose that Q is a square with side 1,
that d = 1, and ro(x, y) depends only on x, so
ro(x, ¥) = ro(x). If ro(x) is given by

-1, 0<x<03
ro(x) = 1, 03<x<07,
-1, 07<x<1,

then eqn (12) holds and A* (r, Qo) > 0. In this
case 1 (ro, £2o) can be calculated via the methods
of Cantrell & Cosner (1991a). (Essentially the
idea is to construct the eigenfunction ¢ = ¢(x) by
solving explicitly on each subinterval where ro(x)
is constant, keeping the eigenvalue to be deter-
mined as a parameter, and matching ¢(x) and
d¢/dx across the discontinuities of ro(x).) This
calculation yields A{ (ro, Qo) = 10.2. If Q is a
square with area 4 and r(x, y) = ro(x/\/Z) then
A (r, Q) = Af (ro, Qo)A =~ 10.2/4.

3, Connections and Variations
3.1, A DIFFERENT SORT OF SPATIAL RESCALING

The sort of spatial rescaling discussed in the
previous section and illustrated in Fig. 1 is only
one way in which a larger region could be related
to a smaller one. Under that sort of rescaling, the
arrangement of favorable and unfavorable habi-
tats does not change but the size of both does.
For example, if in Q, there is a single region with
ro > 0 then in ©Q there will still be only a single
region with r > 0 but the size of that region will
change, as shown in Fig. 1. Another possible way
in which a larger region might be related to
a smaller region would be if the larger region
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FIG. 2. This figure again shows graphs of environmental
quality, as measured by the local population growth rate
r(x), in another pair of one-dimensional environments, but
with a different sort of scaling. The original environment, as
shown in (a) is the same as in Fig. 1(a). (b) Shows a rescaling
of the environment in which the spatial variable is not
“stretched” but where the larger environment consists of
a number of copies of the smaller environment which have
been joined together, In this scaling, the number of regions
of favorable habitat (r(x)>0) and unfavorable habitat
(r(x) < 0) is increased as the size of the overall environment
is increased, while the size of each favorable or unfavorable
region remains the same. This sort of scaling leaves the
principal eigenvalue A{ unchanged. The reason why increas-
ing the total amount of favorable habitat does not change
1 and thus does not affect predictions of persistence or
extinction for the population is that in this case the scaling
also increases the number of internal interfaces with regions
of unfavorable habitat, which in turn increases the likeli-
hood that individuals will disperse into unfavorable regions.
[See Cantrell and Cosner (1989, 1991a, b) for further dis-
cussion of this point and related topics.]

consisted, in effect, of several connected copies of
the smaller region. This is illustrated in Fig. 2.
This sort of rescaling will typically have little
or no effect on A and thus does not lead to
a simple rescaling relation as in eqns (7), (9), (17),
(19) and (20), since it may well be the case that
Ao(Fo, Qo) = AT (r, Q). To see this, suppose that
Q, is a square and that ro is symmetric with
respect to'the center of the square. The eigenfunc-
tion ¢o(x, y) will then also be symmetric with
respect to the center of the square, and will have
normal derivative d¢o/0n = 0 on the boundary of
the square. To obtain an eigenfunction ¢ on & we
could simply take ¢ to be a translated copy of
¢, on each of the translated copies of £, making
up Q. (Since ¢, was symmetric and had 0¢o/
on = 0 on the boundary of Q,, the copies would

fit together to form a smooth function ¢ on all of
Q.) At any point of @, the eigenfunction ¢ would
satisfy a spatially translated copy of eqn (14), so
in that case we would have 1] (o, 20) = 4{ (, Q).
The difference between the sort of rescalings illus-
trated in Figs 1 and 2 is that although the total
amount of favorable habitat is increased in both
rescalings, in Fig. 2 the number of internal
transitions between favorable and unfavorable
habitats is also increased, so the probability of an
individual dispersing into an unfavorable region
is not decreased from what it would be on the
original smaller region Q. A related effect can be
observed if the area of 2 and the integral of r(x, y)
(i.e. the average quality of the habitat) or the total
size and degree of favorability of the favorable
and unfavorable regions are kept fixed, but r(x, y)
becomes more oscillatory. For example, this
would occur if © were the unit square and
we took r,(x, y) = sin(2nnx) sin(2rny) — 1/2. As
n — o0, r,(x, y) becomes highly oscillatory. Basi-
cally, this would reflect a fragmentation of the
favorable regions within Q. By the methods of
Cantrell & Cosner (1989, 1991a, b) it can be seen
that Ay (r,(x, ), Q) — oo as n— oo, so that a suffi-
cient amount of habitat fragmentation would
yield A{ > 1 and hence predict extinction for the
population in question. Again, the mechanism
causing the detrimental effect would be the
increased likelihood of an individual dispersing
in such a way that it experienced its habitat on
the average as being unfavorable.

Example 3. Suppose that Q, is again a square
with side 1, and ro(x, y) = ro(x) is as in Example 2:

-1, 0<x<03
Fo(x) = 1, 03<x<07,
-1, 0.7<x<1.

If we take Q to be a larger square made from 4, 9,
and 25, or in general n? copies of Q, put together
to form a square, then by the symmetry of ro(x)
and hence of ¢(x), the eigenfunction for the larger
region will consist of copies of ¢(x) (in the same
way that r(x) will consist of copies of ro(x), re-
peated in the way shown in Fig. 2). Because the
original forms of ro(x) and ¢ (x) are not stretched,
merely repeated, they satisfy the original
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eigenvalue equation with the value of 4 unchanged.
Hence, we have A7 (r, Q) = A{ (ro, Qo) = 10.2, as
long as 2 consists of n® copies of Qo and r con-
sists of n® copies of r, for any integer n.

3.2. INSULAR BIOGEOGRAPHY

In Cantrell & Cosner (1994) a theory of spe-
cies—area relationships in insular biogeography
was developed from KISS models via eqn (9). The
goal of that paper was to construct an alternative
to the well-known equilibrium theory of island
biogeography of MacArthur & Wilson (1963,
1967) on the basis of spatially explicit models for
population dynamics. The key idea was to hy-
pothesize a distribution s(p) of values of the ratio
r/d across a community, so that the number of
species with a <r/d <b would be given by the
integral of s(p) from a to b. Rewriting eqn (9) as
r/d > A%/A and hypothesizing that any species
whose area requirements are met will be present
in the community which would then yield the
species-area relation

o0

S(4) -—~J s(p)dp. 1)

AslA

In Cantrell & Cosner (1994) we considered in
detail the case where s(p) was lognormal, but
there are many other reasonable choices. A pos-
sible criticism of the approach is that it was based
on KISS models, which are considered by some
to be quite unrealistic in their treatment of the
behavior of individuals at the boundary of an
island. However, if we replace r by p and A} by
A¥(rE, Qo) and use eqn (20) instead of eqn 9) we
get exactly the same species-area relation shown
in eqn (21). The only difference is that the mecha-
nism producing the area effect is spatial hetero-
geneity rather than dispersal across a boundary
into a hostile exterior region. The possible rel-
evance of spatial heterogeneity in terms of mul-
tiple habitat types is discussed in Williamson
(1981, p. 118-125). To give a full treatment of the
effects of multiple habitat types for multiple spe-
cies, it would require an examination of a set of
models where ro(x, y) was qualitatively different
for different ensembles of species. We shall not
pursue that point further at the present time,
except to point out that it certainly would be

possible to apply the present methods in such
a context (see e.g. Cantrell & Cosner, 1993).

3.3. MORE GENERAL MODELS

It can be argued that many sorts of organisms
have density-dependent rates of population
growth and disperse in more complex ways than
via simple diffusion. Two likely variations on
diffusion are dispersal to avoid crowding and
directional dispersal in the direction of more
favorable habitats. If we wish to describe a popu-
lation with a logistic rate of growth, a density-
dependent rate of random dispersal that increases
with crowding, and which disperses in a directed
way along gradients of increasing habitat quality,
the basic models (1) and (3) should be replaced by

ou 0 ou 0 ou
Frimire (d(u) _6_>2> + -a;<d(u)—a;>

0 (or d (or
-0 [—a—; (5; u> + —a-y (5; u>} (22)
+r(x, Yu —c(x, y)u®> inQ

with u satisfying a boundary condition corre-
sponding to eqn (3) on 09 for all £ > 0. In eqn (22)
we would assume that d(u) is increasing with u,
with d(0) > 0, that « is a nonnegative constant
describing the strength of the tendency of the
population to move up the gradient of (x, y), and
¢(x, y)is a positive function which describes logis-
tic self-limitation. Models of the general type
shown in eqn (22) were studied in Cantrell &
Cosner (1991b) under the boundary condition (2).
If eqn (12) is satisfied then results corresponding
to those of Cantrell & Cosner (1991b) will hold
for eqn (22) under the reflecting boundary condi-
tion shown in eqn (23). The first relevant point is
that under hypothesis (12) the associated linear
eigenvalue problem given by

2% 029 a (or a (or
d(O)(‘ea'»zf*"a‘yf)““[a(ﬁi‘ﬁ)*é;(é;"’ﬂ
+irgp =0 inQ, (23)

o or
cl(O)—a-'{—-ocgﬁqb =0 ondQ
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has a positive principal eigenvalue A{ (o, 7, Q)
provided dr/on < 0 on 8Q. This follows from re-
sults of Senn & Hess (1982) and Senn (1983);
related results are discussed in some detail in
Belgacem (1994). The second key point is that
model (22) with boundary condition (3) predicts
persistence for the population exactly when
A (o, 7, Q) < 1. This follows from the methods
used to treat the corresponding problem under
boundary condition (2) in Cantrell & Cosner
(1991b) with no major changes in the analysis; see
also Senn (1983) for related work on models with
purely linear diffusion. The final observation is
that because of the structure of eqn (23) the eigen-
value A; (o, r, Q) has the same scaling properties as
do the principal eigenvalues in eqns (13) and (14),
so that A7 (o, 7, Q) = AT (o, 0, Qo)/A. The scaling
properties are the same because the term describ-
ing directed motion along environmental gradi-
ents still involves taking two derivatives with re-
spect to the spatial variables. Thus, the discussion
of scaling in the case of the simpler model (10)
extends to more general models of the form (22).

3.4. COMPUTABLE ESTIMATES AND
EIGENVALUE DEPENDENCE ON r(x, y)

It is natural to ask whether A (r, Q) can be
computed explicitly. In general, the answer is no.
However, the condition that #(x, y) be continuous
in the simple models of Section 2 can be
weakened to allow piecewise continuous growth
rates. In the case of models in a single space
dimension, eigenvalues corresponding to cases
where r = r(x) is a step function, were character-
ized in terms of equations involving trigonomet-
ric and hyperbolic functions in Cantrell & Cosner
(1991a). Those characterizations could be used
for numerical computation; they were exploited
in Cantrell & Cosner (1991a) to study the quali-
tative dependence of Af (r, Q) on the spatial
arrangement of positive and negative values of .
(Recall that positive and negative values of r cor-
respond to regions of favorable and unfavorable
habitat, respectively.)

4, Conclusions

Our basic conclusion is that the prediction of
KISS models of a critical patch size needed to

sustain a population can also be obtained from
a reasonably broad range of reaction-diffusion
models in which the mechanism producing the
critical patch size is spatial heterogeneity within
the patch rather than dispersal across the patch
boundary into a hostile exterior region as in
classical KISS models. More precisely, the mech-
anism inducing a critical patch size in our models
is the interaction of a continuum version of
source-sink dynamics (Pulliam, 1988) within
a closed patch with spatial scaling of the source
and sink regions. To produce the effect, the scal-
ing must increase the size of subregions of favor-
able (and unfavorable) habitat as the size of the
patch increases. Scalings in which the number of
favorable subregions increases with patch size
but the size of those subregions does not increase
will not produce the critical patch size phenom-
enon.

A secondary conclusion is that the derivation
of a species—area curve in insular biogeography
theory from KISS models in Cantrell & Cosner
(1994) could also be based on spatial heterogen-
eity via the models presented here. In the case of
insular habitats with sharp boundaries such as
true islands, the hypothesis of closed patch with
internal variation might be more realistic than
that of an open patch with dispersal across the
boundary. The ideas discussed here and in
Cantrell & Cosner (1994) are related to those
discussed in Holt (1992) in that the internal popu-
lation dynamics of the island are considered as an
aspect of the theoretical approach to biogeo-
graphy.

Our final conclusion is more general and
philosophical. We believe that the ideas present-
ed in this article suggest that the division of
spatial models into KISS models for area effects,
patch models for spatial heterogeneity,
and stochastic models for colonization and
extinction and hence for island biogeography
is somewhat artificial from the modeling
viewpoint. There are sound ecological reasons for
preferring certain types of models for certain situ-
ations, but the choice need not be based on the
supposed mathematical limitations of some the-
oretical approach. Much more can be built into
or extracted from mathematical models than
what has appeared in the ecological literature
to date.
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